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Abstract 
This paper presents an effective algorithm which is a combination of integral collocation 

method and homotopy analysis method that can be used for effective analytical and numerical 

solutions of nonlinear initial and boundary value problems of integro-differential equations.  

Examples were given to verify the efficiency and reliability of the new algorithm and 

comparisons were made between the obtained results and those in the literature.  Our numerical 

results confirmed that the new algorithm provides relatively accurate results with rapid rate of 

convergence than the standard homotopy analysis method. 

Keywords: Integral Collocation, Homotopy Analysis Method, Nonlinear Integro-differential 

Equations, Algorithm, Initial Value Problems, Boundary Value Problems. 

Introduction 
Recently, considerable interest in analytical and numerical solutions of integro-differential 

equations has been stimulated due to their various applications in many fields like Physics, 

astronomy, potential theory, fluid dynamics, biological models and chemical kinetics, control 

theory, elasticity, polymer rheology, etc.  It is usually difficult to obtain the closed-form 

solutions of two-point boundary value problems of integro-differential equations, therefore the 

need to solve the problems by approximate and numerical methods. 

In recent times, several numerical methods of solving integro-differential equations have been 

developed such as Collocation method in Ordokhani and Dehestani (2013), Sweilam et al. 

(2012) and Yousefi and Razzaghi (2005). Homotopy analysis method in Ahmad et al. (2012). 

Reproducing Kernel  Hilbert Space (RKHS  )method in Mohammed et al. (2012). Pseudo 

spectral method in Sweilam et al. (2013). Variational iteration method in Khader (2012), 

Sweilam et al. (2013) and Sweilam (2007). Homotopy perturbation method in Khader (2012b) 

and Sweilam et al. (2008). Spline function, expansion in Mohammed and Khader (2011).  New 

Iterative method in Hemeda (2012). Bernstein polynomial method in Yadollah and Sara (2011). 

Legendre Wavelet method in Venkatesh et al. (2013) and Yousefi and Razzaghi (2005). 

Spectral-homotopy analysis method in Atabakan et al. (2012) and so on. 
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Homotopy Analysis Method (HAM) was first proposed by Liao (1992).  It is based on the 

homotopy concept in topology for solving nonlinear differential equations.  Unlike the 

traditional perturbation methods like Lyapunov’s, artificial small parameter method in 

Lyapunov (1992). Adomian decomposition methods in Adomian (1994) and Adomian (1990) 

and the  -expansion method, which are the special cases of HAM, this approach does not need 

a small perturbation parameter. 

In this work, integral collocation method is blended with homotopy analysis method and this is 

done by using integrated Chebyshev polynomials to represent the initial approximation and the 

derivatives corresponding to m = 1.  Thereafter, the first order approximation is obtained which 

is then substituted into the original equation to obtain residual equation.  The residual equation 

is then collocated at the chosen collocation points and also the given conditions are used to 

determine the unknown constants which are later substituted into the first order approximation 

to obtain the required solution.  Thus, we consider integro-differential equation of the form: 

       

( )

1 1 1 2 2 2( ) ( ) ( ) ( , ) ( , ( )) ( , ) ( , ( )) , 0 , (1)
n b x

k

k
a a

k o

P x y x g x k x t t y t k x t t y t dt a x t b   


             

under the mixed conditions  

        


1
( ) ( )( ) ( ) , 0,1, , 1

n
k k

j k jk j

k o

a y a b y b j n




                                                        (2)                       

where y(x) is an unknown function, the known function, are Pk(x),  k = 0,  1, …, n, g(x),  k1(x,t), 

k2(x,t),  ѱ1 (t, y(t) )  and  ѱ2 (t, y (t)).  Also, ajk,  bjk,  λ1, λ2  and  λj  are real or complex constants. 

The Homotopy Analysis Method 
Homotopy analysis method is a non-perturbation method which was proposed by Liao (1992) in 

his Ph. D thesis.  The method is valid for strongly nonlinear problems with or without small / 

large parameters.  The homotopy analysis method constructs a sequence which continuously 

deforms from an initial guess of the solution of a differential equation to the exact solution. 

Let us consider the following differential equation  

                                                                                            (3)  

where N is a nonlinear operator for this problem, x denotes an independent variables, y (x) is an 

unknown function. By means of generalizing the traditional homotopy method, Liao (1992) 

constructs the so called zero-order deformation equation  

 (1 – q) L [  ( x; q) – y0 (x) ] = q 0 H(x) N [ (x;q]                                              (4)

  

where q  [ 0, 1] is the embedding parameter, 0  0 is a non -zero auxiliary parameter,        

H(x)  0 is an auxiliary function, L is an auxiliary linear operator, yo(x) is an  initial guess of 

y(x), y(x; q), is an unknown function, on the independent variables x and p.  

Obviously, when q = 0 and q = 1, it holds  

                   0( ;0) y ( ), ( ;1) ( )x x x y x                                                               (5)                               

     

respectively.  Thus as q increases from 0 to 1, the solution y  varies from the initial guess 

y0(x) to the solution y(x). Expanding y (  in Taylor series with respect to q, we have 

  0

1

( ; ) y ( ) ( ) ,m

m

m

x p x y x q




                                (6) 

where 
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1 ( : )

( )
!

0

m

m m

x q
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m q
q







                        (7)  

Assume that the auxiliary linear operator, the initial guess, the auxiliary parameter, c0 and the 

auxiliary function H(x) are selected such that the series (6) is convergent at q =1, then due to 

(5),  we have  

    
1

( ) ( ) ( )o m

m

y x y x y x




                     (8) 

  

 

 

Define the vector   

     1( ), ( ), , ( )o nn
y y x y x y x                                      (9)    

Differentiating (4) m-times with respect to the embedding parameter q and then setting q = 0 

and finally dividing by m!, we have the so–called mth–order deformation equation  

  1 1
[ ( ) ( )] ( ) ( ( )),m m m o m m

L y x y x c H x R y x  
                               (10) 

where 

 
1

1 1

1 [ ( ; )]
( )

( 1)!
0

m

m m m

N x q
R y

m p
q



 




 


                  (11) 

and 

0, 1

1, 1

m

m

m






 




                            (12) 

 

For any given nonlinear operator N, the term 
1

( )m
m

R y



can be easily expressed by (11). Thus, 

we can gain y0(x),  y1(x),  y2(x),. . ., by means of solving (10) one after the order. The mth–order 

approximation of y(x) is given by   

Construction Process of Integral Collocation-Homotopy Analysis Method 

(IC-HAM) 
This section presents an algorithm based on integral collocation and homotopy analysis methods            

to solve (1) and (2).  The zeroth–order deformation equation is given by  

 0(1 ) [ ( ; ) ( )] ( )[ ( ( ;q))], q [0,1]oq L Y x q y x qc H N Y                              (13) 

where 
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1 1 1
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k t t y t dt

x
H and L d

k

      

  
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              (14) 
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The initial guess y0(x) of the solution y(x) and other derivatives corresponding to m = 1 are 

determined as follows:  

   
( )

( )
k N

o
n nk

n o

d y x
a T x

dx 

                             (15) 

Integration equation (15) successively, gives  
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where Tn(x) are Chebyshev polynomials of degree n of the first kind which is valid in the 

interval  -1   and is given by  

    
1( ) cos(n cos )nT x x                  (20) 

and which satisfy the recurrence relation given by  

                                               
1 1( ) 2 ( ) ( ), 1n n nT x xT x T x n                                                 (21)

  

Following the HAM procedure, we formulate the high-order deformation equations by  

differentiating the zeroth-order deformation equation m times with respect to q then dividing by 

m! to get  

   1 1
( ) ( ) ( ) ( ( )),m m m o m m

L y x y x c H R y   
                           (22) 

Operating the operator L
-1

, the inverse of   to both sides of (22), then the mth-order 

deformation will have the following form:  

  
1

1 1
( ) ( ) ( ( ) ( ( )),m m m o m m

y m y x c L H R y  

 
                  (23) 

where 
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Thus, we have the following recursive formula for the IC-HAM: 

[0]

0 ,0

0

1

1 0 1 0

( ) ( )

( ) ( ( ) ( ( ))

N k

n n

n

y x x

y x c L H R y
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
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                           (25) 

1

1 0 1
( ) ( ) ( ( ) ( ( )), 2,3,...m m m m

y x y x c L H R y m 

 
    

Moreover, substituting (8) into (1) yields the residual equation:  
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1 1

( , , ) ( ) ( ( ) ( ))
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The residual equation (26) is thereafter collocated at the point jx x  which gives  
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where  

                                   
( )

, 1,2,3,..., N 1
2

j

j

b a
x a j

N


   


                                                 (28)                         

                                                                                                           

Thus, (27) gives (N+1) nonlinear algebraic system of equations in (N+k+1) unknown constants. 

Extra k equations are then obtained from the boundary conditions. Altogether, we have (N+k+1) 

algebraic nonlinear system of equations. These (N+k+1) nonlinear equations are then solved by 

Newton`s method to obtain the (N+k+1) unknown constants which are then substituted into the 

first-order approximation (y0(x) + y1(x)). 

It should be noted that the convergence- control parameter, c0, is taking to be 1 for this 

proposed method. 

 

Numerical Examples 
To show the efficiency of Integral Collocation-Homology Analysis Method (IC.-HAM) 

described above, six examples are considered. The exact solutions of most of the problems were 

gotten from Babolian et al. (2009a), Babolian et al. (2009b), Maleknejad et al. (2011), 

Venkatesh et al.  (2013) and Ordokhani and Dehestani (2013)  
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Example 1:  Consider the first–order nonlinear Fredholm  integro-differential  

equation 
1

/ 2

0

1
( ) 1 ( ) , 0 1

3
y x x xy t dt x       

with the initial condition y(0) = 0 and exact solution ( )y x x . 

 According to (4), the zeroth-order deformation can be given by  

            

                     (29)

 

                   

The initial approximation has the form of (19) and we chose the auxiliary linear operator  

( , )
( ( , )

dy q
y q L

dx


                                                                                                                  (30)  

and 

  H(   

Hence, the  mth-order deformation is given by  

                           L 1 1
( ) ( ) ( ( ))m m m m m

y y x H R y  


 
                             (31)

         

where 

                      
1

20
1 0

0

( ; ) 1
R ( ( )) (1 ) ( )

3
o

dy q
y y t dt

d


  





      

and 

1
21
01

0

( ; ) 1
( ( )) ( ) (1 )(1 ); 2

3

m
m mm

dy q
R y y t dt m

d


   







                                   

Now, the solution of the mth-order deformation equation for m ≥ 1 becomes  

                           ym
1 1

0
( ) ( ) ( ( ))

x

m m m mx y x R y d  


                                             (32)

   

Consequently, the first few terms of the IC–HAM series solution for N = 1 are as follows: 
2

0 1 0 1 1( ) ( )y x c a a x a x     

          y1
2 2 2 2

1 0 1 1 1 1 1 0 1 0 0 1

1 1 1 1 1 1 1
( ) ( ) ( 1)

12 6 60 2 6 6 2
x a a a a c c a a c a x a a x             

and so on 

The first–order approximate solution by IC-HAM is  

                                 0 1( ) ( ) ( )y x y x y x   

 that is,  

2 2 2 2

1 1 1 0 1 0 1 1 1 0 0 1 1

1 1 1 1 1 1 1
y(x) (2 ) (2 2 1) (33)

60 12 6 2 2 6 6
a a a a c a c c a a x a a x c             

            

and the residual of the solution is  

                            R =
1

2

0

( ) 1
(1 ) ( )

3

dy x
x xy t dt

d x
                           (34)
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Collocating (34) at the points 1 2

1 2
,

3 3
x x   and using the given condition, we obtained 

system of nonlinear algebraic equations which were solved by using Newton’s method. Thus, 

we get  

                   
0 1 11, 0 0a a and c    

Substituting these values into (33), we obtain ( )y x x , which is the exact solution. 

                  
Example 2: Consider the nonlinear FVIDE  

1
/ 2 6 3 2

0 0

1 1 1 1
( ) ( ) 2 ( ) ( ) , 0 1,

10 32 4 2

x

y x y x x x x ty t dt xy t dt x         
     

 

 

with condition y(0) = 0. The exact solution to this example is 
2( )y x x  

Following the same procedure as discussed in Example 1 for case N = 2, we obtained 

0 1 2 11, 1, 0, 0a a a and c    . Substituting these values into the first- order 

approximation, we obtain                   

                           
2 11 5( ) 1 10y x x X x                                                                                 (35)  

which is very close to the  exact solution 
2( )y x x  

 

 

Example 3: Consider the nonlinear VHIDE  

/ 2

0

1 2
( ) 2 ( ) ( ) (2 ) ( ) y , 0 1,

3 3

x

y x sin x cos x cos x cos x t dt x         

with condition y(0) = 1. The exact solution to this equation is ( ) cos( ) sin( )y x x x  . For each 

test point, the absolute error between the exact solution and the results obtained by the Bessel 

collocation method  and Hybrid Legendre polynomials and block–pulse functions approach and 

IC-HAM is compared in Table 1. With only one iteration for N = 4 a better approximation has 

been obtained than the results in Maleknejad et al. (2011) and Ordokhani and Dehestani (2013). 

 

Table 1: Absolute errors of the first order approximate solution  
X Exact solution 

 
 

IC-HAM 

solution 

N = 4 

 

IC-HAM 

Error 

N = 4 

 

Method of  

Ordokhani and 

Dehestani 

(2013) 

N = 4 

 

Method of 

Maleknejad et 

al. (2011) n = 8 ,     

m = 8 

0 1.0000000000 1.0000000000 0.00 0.00 1.00 E – 06  

0.1 0.8951707486 0.8951626483 8.10 E – 06  1.07 E – 05 1.60 E – 05 

0.2 0.7813972470 0.7813883438 8.90 E – 06 3.26 E – 05 2.56 E – 04 

0.3 0.6598162824 0.6598074590 8.82 E – 06 7.65 E – 05 8.40 E – 05 

0.4 0.5316426517 0.5316333622 9.29 E – 06  1.98 E – 04  9.43 E – 04 

0.5 0.3981570233 0.3981470954 9.93 E – 06  5.09 E – 04  1.20 E – 05 

0.6 0.2606931415 0.2606827164 1.04 E – 05  1.19 E – 03  2.76 E – 04  

0.7 0.1206245001 0.1206132468 1.13 E – 05 2.50 E – 03  4.70 E – 05  

0.8 -0.0206493816 -0.02066277097 1.34 E – 05  4.82 E – 03  1.10 E – 05  

0.9 -0.1617169413 -0.1617339766 1.70 E – 05 8.60 E – 05  7.80 E – 05 

1.0 -0.3011686789 -0.3011877744 1.91 E – 05  1.44 E – 02 8.15 E – 04  
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Example 4: Consider the second-order nonlinear integro-differential equation  

  

with the initial condition: 
1

/ / /

0
( ) 2 ( ) ( )

2

x
y x xy t y t dt     

            
/(0) (0) 0y y   

Similarly, the first- order approximate solution by IC- HAM for this example when N = 2 is  

4

2 2 0 2 1 1 2 2 0

2

1 1 0 1 1 2 1 2 1

2 2 2 3

2 2 1 0 2 1 2 1 0

2

1 0 2 1 2

4 1 1 1 1
( ) (

3 12 216 36 72

1 1 1 2 1 8 1

12 36 72 3 6 3 12

1 1 1 1 1 1
)

36 12 36 432 432 48

( 1)

y x a x c a a a c a a a

c a a a a c c a c

c a c a c a a a a x

a a a x c x c

     

      

     

      
(36)

 

and the residual of the solution is 

                                   
2

1
1

2 0

( )
(2 ) ( ) ( )

2

d y x x
R xy t y t dt

dx
                                               (37) 

Thus, collocating (37) at the points  = ,  = ,  =  and utilizing the given conditions, 

we obtained system of nonlinear algebraic equations which were also solved by Newton’s 

method. The following values were obtained:            

 = 2,   = 0,   = 0,   = 0 and   = 0 

Substituting these values into (36), the result will be as y (x) = , that is the exact solution. 

 

Example 5: Consider the nonlinear FIDE  

              
1

/ / 1 2 2

0
( ) y ( ) y( ) ( ) ( ) ( ) , 0 , 1x ty x x x x x e sin x sin x e y t dt x t        

with conditions:  
/(0) 1, (0) 1y y   

and the exact solution is ( ) exp( )y x x  

Using the proposed method the first order approximate series solution for N=4 can be expressed 

as  

       y(x)=1+x+0.5001766022x
2
+0.1685402034x

3
+0.04367390939x

4
+0.005029212484x

5
+              

0.003521747354x
6
+0.000450084323x

7
+0.0001201260022x

8
-0.00003366241046x

9
- 

4.0362278 X10
-10 

x
11 

+ 2.58732546 X10
-12 

x
13

 

The approximate series solution of Example 5 is compared with the exact solution, and the 

solution of Ordokhani and Dehestani (2013) in Table 2 which shows that the method is quite 

efficient. 

 

 

Table 2: Numerical results of Example 5 

X Exact Solution IC-HAM 

Solution 

Error of IC-HAM  

N=4 

Error of Ordokhani 

and Dehestani 

(2013).      
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N=4 

0 1.00000000 1.000000000 0.00 0.00 

0.1 1.105170918 1.105174727 3.81E-06 - 

0.2 1.221402758 1.221427092 2.43E-05 2.68E-04 

0.3 1.349858808 1.349934935 7.61E-05 - 

0.4 1.491824698 1.491998138 1.73E-04 2.15E -03 

0.5 1.648721271 1.649050372 3.29E-04 - 

0.6 1.822118800 1.822672863 5.54E-04 7.15E-03 

0.7 2.013752707 2.014610022 8.57E-04 - 

0.8 2.225540928 2.226786865 1.25E-03 1.61E -02 

0.9 2.459603111 2.461328003 1.72E-03 - 

1.0 2..7182818258 2.720578053 2.30E-03 2.90E-02 

 

Example 6: Consider the Nonlinear Volterra IDE 

   
2

/ /

0

1
( ) inh Sinh 2 0, 0 , 1

2 4

x x
y x y t dt S x x s x

 
       

 
  

 subject to the boundary conditions   

y(0) = 0, y(1) = Sinh(1) 

The exact solution is ( ) sinh( )y x x  

Similarly, using the proposed method for case N=5, we obtain the following approximate 

solution: 

y(x)=1.000000335514422x-0.000003751688x
2
+0.1666876846x

3
-0.00006543902x

4
+ 

0.0008450551855x
5
-0.0001162240987x

6
+0.000250889928x

7
-1.966201000X10

-7
x

8
 

+0.000002516215704x
9
–1.765716171X10

-7
x

10
+4.776504870X10

-8
x

11
-1.508840627X10

-8
x

12
+ 

2.290840760X10
-9

x
13

-4.531962600X10
-10

x
14

+1.382069651X10
-9

x
15

–7.766972500X10
-12

x
16

+ 

1.236412037X 10
-11

x
17 

 

In Table 3, the numerical results of Example 6 are presented and the results are also compared 

with the exact solutions. It is observed that the method is quite efficient and accurate. 

Table 3: Numerical results of Example 6 

X Exact Solution IC-HAM Solution Error 

0 0.000000000 0.000000000 0.00 

0.1 0.1001667500 0.1001667617 1.17E-08 

0.2 0.2013360025 0.2013360139 1.14E-08 

0.3 0.3045202934 0.3045203055 1.21E-08 

0.4 0.4107523258 0.4107523386 1.28E-08 

0.5 0.5210953055 0.5210953187 1.32E-08 

0.6 0.6366535821 0.6366535960 1.39E-08 

0.7 0.7585837018 0.7585837163 1.45E-08 

0.8 0.8881059822 0.8881059966 1.44E-08 

0.9 1.0265167257 1.026516741 1.50E-08 

1.0 1.1752011936 1.175201194 4.00E-10 

 

Conclusion 
The main objective of this paper is to introduce a new method for solving nonlinear integro- 

differential equations. We have achieved this objective by using the coupling technique of 

integral collocation method and homotopy analysis method. One major advantage of this 

method is that the problem of finding the value of convergence-control parameter does not 
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arise. In order to illustrate the accuracy of the method, we compared our approximate solutions 

of the examples with their exact solutions and approximate solutions presented by other 

methods. The numerical results showed that the proposed method can solve nonlinear integro-

differential equations effectively and the comparison shows that the results of the new method 

are in good agreement with the existing results in the literature. 
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